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a b s t r a c t

The axisymmetric problem of the contact interaction of an elastic cover plate with an elastic layer, loaded
at infinity with a uniform stretching force, directed parallel to the boundaries of the layer, is considered.
The cover plate resists stretching but does not resist bending. The contact shearing stress under the cover
plate, the displacement of the points of the cover plate and the deformation distortion coefficient of the
elastic layer are determined.

© 2008 Elsevier Ltd. All rights reserved.

1. Formulation of the problem

Suppose the boundary z = h1 of an elastic layer 0 ≤ r < ∞, 0 ≤ z ≤ h1 on a circle r ≤ a is reinforced with an elastic cover plate, rigidly attached
to the boundary of the elastic layer. The boundary layer z = 0 is stress-free. The elastic layer is loaded at infinity by a uniform stretching force
p. The cover plate resists stretching but does not resist bending. In this case the strain of the cover plate can be described by an equation1

with free-edge boundary condition

(1.1)

(1.2)

Here �2 = G2/(1 − �2), G2 and �2 are the shear modulus and Poisson’s ratio of the cover plate, h2 is its thickness, u2(r) is the horizontal
displacement of points of the cover plate, and �(r) is the contact shearing stress between the lower surface of the cover plate and the upper
surface of the elastic layer.

The boundary conditions for the elastic layer have the form

(1.3)

at infinity

(1.4)

while residual stresses vanish. Here �(1)
r , �(1)

z , �(1)
rz are the stresses in the elastic layer and u1 is the horizontal displacement of points of the

elastic layer.
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It is obvious that

(1.5)

By searching for a solution of the Lamé equations with boundary conditions (1.3) and (1.4) in the form

(1.6)

where G1 and �1 are the shear modulus and Poisson’s ratio of the elastic layer, w1 is the vertical displacement of points of elastic layer, and
J0(x) and J1(x) are Bessel functions, and using the well-known technique of the Hankel integral transformation,2 we can reduce problem
(1.3), (1.4) to a determination of the function �(r) from the integral equation

(1.7)

Thus, to determine the functions �(r) and u2(r) we must simultaneously solve differential Eq. (1.1) with boundary condition (1.2) and
integral Eq. (1.7).

We will change to dimensionless variables and notation by the formulae

Henceforth omitting the prime, we obtain

(1.8)

(1.9)

Problem (1.8), (1.9) contains three dimensionless parameters: k, �2 and �. Integral Eq. (1.9) is equivalent to the following paired integral
equation

(1.10)

The Hankel tranformant T(�) is related to the original �(r) by the expressions

Note that

and the inner integral on the left-hand side of Eq. (1.9) converges.
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Making the replacement of variables y = �� in integral Eq. (1.9), we obtain

(1.11)

2. Reduction of the axisymmetric problem to an infinite algebraic system

We will construct a system of orthonormalized polynomials, odd in r, such that

(2.1)

The first three polynomials, which satisfy conditions (2.1), have the form

(2.2)

Polynomials (2.2) and those following them can be constructed by a Schmidt orthogonalization process,3 by means of which a closed
system of polynomials is obtained satisfying the second condition of (2.1) and belonging to a Hilbert space with norm, which follows from
the scalar product (2.1).

The solution of problem (1.8) can now be represented in the form

(2.3)

Substituting the function u2(r) in the form of (2.3) into integral Eq. (1.11), we obtain

(2.4)

Since the operator on the left-hand side of integral Eq. (2.4) is linear and the system of polynomials Qk is linearly independent, the following
representation holds

(2.5)

We will represent the kernel L(y) of integral equation (2.4) in the form L(y) = 1 − M(y) and substitute expression (2.4) into integral Eq.
(2.4) (or the first relation of the paired integral Eq. (1.10)), and also into the second relation of paired integral Eq. (1.10). Equating the
coefficients for a0, a1, . . ., in the relations obtained assuming a0 = 1, we conclude that these relations decompose into the following system
of paired integral equations

(2.6)

(2.7)
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Here we have introduced the following notation

(2.8)

We will use an expansion of the Bessel functions in a power series. Then

(2.9)

We will seek �k(r) (k = 0,1,2,. . .) in the form of a series

(2.10)

Substituting expansion (2.9) and (2.1) into Eqs. (2.6) and (2.7) and equating coefficients of like powers of �, we obtain the following
chain of paired integral equations

(2.11)

Here we have introduced the notation

Note also that

To find �mn (m, n = 0, 1, 2, . . .) it remains to solve the corresponding paired integral equations for �mn.
We will write the paired integral equation in the general form

(2.12)
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where the Hankel transformant T(�) is related to the original �(r) by the expressions

(2.13)

To solve Eq. (2.12) we will use the following formulae4

(2.14)

We multiply the first relation of (2.12) by (t2 − r2)−1/2 and integrate with respect to r from 0 to t, and we multiply the second relation of
(2.12) by (r2 − t2)−1/2 and integrate with respect to r from t to ∞. Changing in the order of integration and using formulae (2.14), we obtain

(2.15)

We now multiply by t and then differentiate the first relation of (2.15) with respect to t. As a result we have

(2.16)

From the first formula of (2.16) we obtain, using a Fourier sine-integral transformation,

(2.17)

Finally, substituting expression (2.17) into the second relation of (2.13), changing the order of integration and using a discontinuous Sonin
integral4

we obtain

(2.18)

We have taken Eq. (2.17) into account here.
Hence, by solving the paired integral Eq. (2.11), we obtain �mn (m, n = 0, 1, 2, . . .) and �(r):

(2.19)

Substituting the expression obtained for �(r) into the second formula of (2.3), we obtain an infinite algebraic system in the coefficients
am of expression (2.3)

(2.20)

After finding an approximation solution of the algebraic system (2.20) (for example, by the reduction method5) the displacements of
the points of the cover plate can be found from the first formula of (2.3), the contact shearing stress can be found using formula (2.19),
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while the coefficient which indicates by what factor the presence of the cover plate reduces the strain of the layer without the cover plate
is found from the formula

For �2 = 0.3 and different values of the parameters k and �, we have
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